
SMT Parser: Tutorial and Reference Manual 
Sandiway Fong, University of Arizona 
September 2024 

Background 
The hand-built English lexicon is in file lex.prolog. Assuming you’re in the same directory as 
the file, to load it, run: 
 
?- [lex]. 
 
After editing the file, you should always reload it and see if there are coding errors. 
You do not need to reload the entire parser (code.prolog).  
Loading code.prolog will also load lex.prolog. 

Worked Example 
Let’s add the words to LEX to handle the following (Berwick & Chomksy, 2016) sentence: 
 
birds that fly instinctively swim 
 
In Terminal, cd to the smtparser directory, start swipl and load in the parser.  
 
smtparser$ swipl 
?- [code]. 
 
The Reference Manual section explains each of the queries used in the worked example.  
 
If you are unfamiliar with Prolog syntax or the interpreter, please consult the SWI-Prolog 
quickstart section (https://www.swi-prolog.org/pldoc/man?section=quickstart) first.  

Birds 
?- θR(bird). 
false. 
 
Add the missing θ-relevant word bird, and its plural form birds.  Edit LEX (lex.prolog), add: 
 
θR(bird). 
 
Reload LEX and test: 
 
?- [lex]. 
true. 
 
?- θR(bird). 
true. 



 
Test the NUM plural (pl) feature value. Because of its regular morphology, you only need to 
define the singular form of the common noun. 
 
?- num(bird,pl). 
false. 
 
?- num(birds,pl). 
true. 
 
The Initial Workspace (WS) is populated using word2heads/3 for each word in the input. Test 
it. Type semicolon (;) if it pauses to obtain other possible answers. 
 
?- word2heads(birds,Hd,As). 
Hd = [birds], 
As = [] ; 
Hd = [bird_θ, v_bird:θ:pres, INFL_v:3sg], 
As = [] ; 
false. 
 
Note, it allows bird to be a transitive verb as well. For the inflected form birds, it returns ɸ-
feature 3sg and TNS feature present (pres). This is because the WordNet LEX is active in the 
background by default. See vStem/3 below. We can turn off the WordNet LEX using 
noMorphy/0. Then birds is only a common noun. 
 
?- vStem(birds,V,S). 
V = bird, 
S = s. 
 
?- noMorphy. 
true. 
 
?- word2heads(birds,Hd,As). 
Hd = [birds], 
As = [] ; 
false. 
 
From here onwards, we proceed assuming the WordNet LEX has been turned off. 

Fly 
 
The verb fly is unergative in the worked example. However, LEX has fly listed as transitive only 
as there are two θ-roles listed, one is the complement of fly, indicated by verbal root flyθ, the 
other is associated with v, indicated by vfly:θ:pres. Note there are two entries for the form fly as it 
can be untensed or have TNS feature pres. 
 
?- word2heads(fly,Hd,As). 
Hd = [fly_θ, v_fly:θ:pres, INFL_v], 
As = [] ; 
Hd = [fly_θ, v_fly:θ, INFL_v], 



As = [] ; 
false. 
 
To modify the argument-taking properties of fly, examine vR/3 in LEX. 
vR(fly, v:fly:θ, θ).  % they are flying planes 
 
We can look for and replicate the vR/3 entry associated with an unergative verb like dance. The 
empty set symbol (ø) indicates that the verb root does not have a complement. 
 
vR(dance, v:dance:θ, ø). % Mary dances 
vR(fly, v:fly:θ, ø).  % birds fly 
 
Reload LEX and test. Notice we have 4 forms now, two transitive, two unergative. 
 
?- word2heads(fly,Hd,As). 
Hd = [fly_θ, v_fly:θ:pres, INFL_v], 
As = [] ; 
Hd = [fly_ø, v_fly:θ:pres, INFL_v], 
As = [] ; 
Hd = [fly_θ, v_fly:θ, INFL_v], 
As = [] ; 
Hd = [fly_ø, v_fly:θ, INFL_v], 
As = [] ; 
false. 
 
The WordNet LEX also lists fly as a noun. We will generally have additional entries if 
noMorphy/0 is not turned on. 
 
Let’s test birds fly, using parse/3. The variable SO will hold the value of the convergent 
syntactic object.  
 
?- parse([birds,fly],SO,L). 
 
Words: birds fly  
Initial WS: fly_θ  v_fly:θ:pres  INFL_v  birds   
INT/EXT: {C, {birds, {INFL_v, {birds, {v_fly:θ:pres, {fly_θ, birds}}}}}} 
Initial Spellout: birds 3pl pres fly birds  
Spellout: birds fly birds  
Error: spellout inconsistent with original words! 
Initial WS: fly_ø  v_fly:θ:pres  INFL_v  birds   
INT/EXT: {C, {birds, {INFL_v, {birds, {v_fly:θ:pres, fly_ø}}}}} 
Initial Spellout: birds 3pl pres fly  
Spellout: birds fly  
Parse found!  
SO = {C, {birds, {INFL_v, {birds, {v_fly:θ:pres, fly_ø}}}}}, 
L = [birds, fly] ; 
 
Initial WS: fly_θ  v_fly:θ  INFL_v  birds   
INT/EXT: {C, {birds, {INFL_v, {birds, {v_fly:θ, {fly_θ, birds}}}}}} 
Initial Spellout: birds 3pl fly birds  
Error: Missing TNS 
Initial WS: fly_ø  v_fly:θ  INFL_v  birds   



INT/EXT: {C, {birds, {INFL_v, {birds, {v_fly:θ, fly_ø}}}}} 
Initial Spellout: birds 3pl fly  
Error: Missing TNS 
false. 
Let’s examine the parse below briefly. The root is non-complement-taking fly_ø, and the head v 
selects for the root fly, second-selects for a θ-relevant WS item, and has TNS pres, as indicated 
by head v_fly:θ:pres. FormCopy ensures only the top copy of birds at the surface subject 
position (spec-INFL) is pronounced, the lower copy in θ-position is necessary for INT. 
 
SO = {C, {birds, {INFL_v, {birds, {v_fly:θ:pres, fly_ø}}}}}

 
 
Let’s also check LEX for swim as a verb. In this case, using word2heads/3, we see swim is 
already present as an unergative verb. 
 
?- word2heads(swim,Hd,As). 
Hd = [swim_ø, v_swim:θ:pres, INFL_v], 
As = [] ; 
Hd = [swim_ø, v_swim:θ, INFL_v], 
As = [] ; 
false. 
 
This is confirmed by the vR/3 lexical entry: 
 
vR(swim, v:swim:θ, ø).  % eagles swim 

that 
 
In this implementation, relative clauses are introduced by a relative pronoun Crel. If you look in 
LEX for relevant information concerning ‘C_rel’, you will find a definition for (special word) 
spWord/2: 
 
%% for relativization, at parse time 
%%   spellout feature word(W) 
 
spWord(who,['C_rel':word(who)]). % ambiguous between noun and relative 
pronoun 
spWord(whom,['C_rel':word(whom)]). 
spWord(that,['C_rel':word(that)]). 
 
[Note: in LEX, there is both spWord/1 and spWord/2. These should be consolidated in a future 
update.] 



 
The listing in spWord/2 means the parser can convert an input word that into the head 'C_rel'. 
The feature word(that) is not used in Merge. Using word2heads/3, we see: 
 
?- word2heads(that,Hs,As). 
Hs = [C_rel:word(that)], 
As = [] ; 
false. 
 
We can check LEX lookup for the entire sentence using words2heads/3. (We omit As below for 
expository brevity.) The correct Initial WS highlighted below is the one that has both fly and 
swim as unergatives with TNS pres. (We currently assume both the relative clause and matrix 
clause must contain tensed verbs. This should be updated to permit untensed relative clauses as 
long as nonfinite marker to is present in English, e.g. the desire to fly.) 
 
?- words2heads([birds,that,fly,swim],As,WS). 
1. WS = [swim_ø, v_swim:θ:pres, INFL_v, fly_θ, v_fly:θ:pres, INFL_v, C_rel_that, 

birds] ; 
2. WS = [swim_ø, v_swim:θ, INFL_v, fly_θ, v_fly:θ:pres, INFL_v, C_rel_that, birds] ; 
3. WS = [swim_ø, v_swim:θ:pres, INFL_v, fly_ø, v_fly:θ:pres, INFL_v, C_rel_that, 

birds] ; 
4. WS = [swim_ø, v_swim:θ, INFL_v, fly_ø, v_fly:θ:pres, INFL_v, C_rel_that, birds] ; 
5. WS = [swim_ø, v_swim:θ:pres, INFL_v, fly_θ, v_fly:θ, INFL_v, C_rel_that, birds] ; 
6. WS = [swim_ø, v_swim:θ, INFL_v, fly_θ, v_fly:θ, INFL_v, C_rel_that, birds] ; 
7. WS = [swim_ø, v_swim:θ:pres, INFL_v, fly_ø, v_fly:θ, INFL_v, C_rel_that, birds] ; 
8. WS = [swim_ø, v_swim:θ, INFL_v, fly_ø, v_fly:θ, INFL_v, C_rel_that, birds] ; 
false. 
 
The parse given by Initial WS #3 above is: 
 
{{birds, {Crelthat, {birds, {INFLv, {birds, {vswim:θ:pres, swimø}}}}}}, {INFLv, 
{{birds,{C_relword(that),{birds,{INFLv,{birds,{vswim:θ:pres,swimø}}}}}}, {vfly:θ:pres, flyø}}}}} 
 

 



[Note: there is a slight discrepancy in rendering between Crelthat and C_relthat. Not critical, but 
should be fixed.] 
 
For completeness, here is the Terminal output of the parse/3 command: 
 
?- parse([birds,that,fly,swim],SO,L). 
 
Words: birds that fly swim  
Initial WS: swim_ø  v_swim:θ:pres  INFL_v  fly_θ  v_fly:θ:pres  INFL_v  C_rel_that  
birds   
INT/EXT: {C, {birds, {INFL_v, {birds, {v_fly:θ:pres, {fly_θ, {birds, {C_rel_that, 
{birds, {INFL_v, {birds, {v_swim:θ:pres, swim_ø}}}}}}}}}}}} 
Initial Spellout: birds 3pl pres fly birds that 3pl pres swim  
Spellout: birds fly birds that swim  
Error: spellout inconsistent with original words! 
INT/EXT: {C, {{birds, {C_rel_that, {birds, {INFL_v, {birds, {v_swim:θ:pres, 
swim_ø}}}}}}, {INFL_v, 
{{birds,{C_rel_that:,{birds,{INFL_v:,{birds,{v_swim:θ:pres:,swim_ø:}}}}}}, 
{v_fly:θ:pres, {fly_θ, birds}}}}}} 
Initial Spellout: birds that 3pl pres swim 3pl pres fly birds  
Spellout: birds that swim fly birds  
Error: spellout inconsistent with original words! 
INT/EXT: {C, {{birds, {C_rel_that, {birds, {INFL_v, {birds, {v_swim:θ:pres, 
swim_ø}}}}}}, {INFL_v, 
{{birds,{C_rel_that:,{birds,{INFL_v:,{birds,{v_swim:θ:pres:,swim_ø:}}}}}}, 
{v_fly:θ:pres, {fly_θ, {birds, {C_rel_that, {birds, {INFL_v, {birds, {v_swim:θ:pres, 
swim_ø}}}}}}}}}}}} 
Initial Spellout: birds that 3pl pres swim 3pl pres fly birds that 3pl pres swim  
Spellout: birds that swim fly birds that swim  
Error: spellout inconsistent with original words! 
INT/EXT: {C, {{birds, {C_rel_that, {birds, {INFL_v, {birds, {v_swim:θ:pres, 
swim_ø}}}}}}, {INFL_v, 
{{birds,{C_rel_that:,{birds,{INFL_v:,{birds,{v_swim:θ:pres:,swim_ø:}}}}}}, 
{v_fly:θ:pres, {fly_θ, {birds, {C_rel_that, {birds, {INFL_v, {birds, {v_swim:θ:pres, 
swim_ø}}}}}}}}}}}} 
Initial Spellout: birds that 3pl pres swim 3pl pres fly birds that 3pl pres swim  
Spellout: birds that swim fly birds that swim  
Error: spellout inconsistent with original words! 
INT/EXT: {C, {{birds, {C_rel_that, {birds, {INFL_v, {birds, {v_swim:θ:pres, 
swim_ø}}}}}}, {INFL_v, 
{{birds,{C_rel_that:,{birds,{INFL_v:,{birds,{v_swim:θ:pres:,swim_ø:}}}}}}, 
{v_fly:θ:pres, {fly_θ, birds}}}}}} 
Initial Spellout: birds that 3pl pres swim 3pl pres fly birds  
Spellout: birds that swim fly birds  
Error: spellout inconsistent with original words! 
INT/EXT: {C, {birds, {INFL_v, {birds, {v_fly:θ:pres, {fly_θ, {birds, {C_rel_that, 
{birds, {INFL_v, {birds, {v_swim:θ:pres, swim_ø}}}}}}}}}}}} 
Initial Spellout: birds 3pl pres fly birds that 3pl pres swim  
Spellout: birds fly birds that swim  
Error: spellout inconsistent with original words! 
INT/EXT: {C, {{birds, {C_rel_that, {birds, {INFL_v, {birds, {v_swim:θ:pres, 
swim_ø}}}}}}, {INFL_v, 
{{birds,{C_rel_that:,{birds,{INFL_v:,{birds,{v_swim:θ:pres:,swim_ø:}}}}}}, 
{v_fly:θ:pres, {fly_θ, {birds, {C_rel_that, {birds, {INFL_v, {birds, {v_swim:θ:pres, 
swim_ø}}}}}}}}}}}} 
Initial Spellout: birds that 3pl pres swim 3pl pres fly birds that 3pl pres swim  
Spellout: birds that swim fly birds that swim  
Error: spellout inconsistent with original words! 
INT/EXT: {C, {{birds, {C_rel_that, {birds, {INFL_v, {birds, {v_swim:θ:pres, 
swim_ø}}}}}}, {INFL_v, 



{{birds,{C_rel_that:,{birds,{INFL_v:,{birds,{v_swim:θ:pres:,swim_ø:}}}}}}, 
{v_fly:θ:pres, {fly_θ, {birds, {C_rel_that, {birds, {INFL_v, {birds, {v_swim:θ:pres, 
swim_ø}}}}}}}}}}}} 
Initial Spellout: birds that 3pl pres swim 3pl pres fly birds that 3pl pres swim  
Spellout: birds that swim fly birds that swim  
Error: spellout inconsistent with original words! 
INT/EXT: {C, {birds, {INFL_v, {birds, {v_fly:θ:pres, {fly_θ, {birds, {C_rel_that, 
{birds, {INFL_v, {birds, {v_swim:θ:pres, swim_ø}}}}}}}}}}}} 
Initial Spellout: birds 3pl pres fly birds that 3pl pres swim  
Spellout: birds fly birds that swim  
Error: spellout inconsistent with original words! 
Initial WS: swim_ø  v_swim:θ  INFL_v  fly_θ  v_fly:θ:pres  INFL_v  C_rel_that  birds   
Initial WS: swim_ø  v_swim:θ:pres  INFL_v  fly_ø  v_fly:θ:pres  INFL_v  C_rel_that  
birds   
INT/EXT: {C, {{birds, {C_rel_that, {birds, {INFL_v, {birds, {v_swim:θ:pres, 
swim_ø}}}}}}, {INFL_v, 
{{birds,{C_rel_that:,{birds,{INFL_v:,{birds,{v_swim:θ:pres:,swim_ø:}}}}}}, 
{v_fly:θ:pres, fly_ø}}}}} 
Initial Spellout: birds that 3pl pres swim 3pl pres fly  
Spellout: birds that swim fly  
Error: spellout inconsistent with original words! 
INT/EXT: {C, {{birds, {C_rel_that, {birds, {INFL_v, {birds, {v_fly:θ:pres, 
fly_ø}}}}}}, {INFL_v, 
{{birds,{C_rel_that:,{birds,{INFL_v:,{birds,{v_fly:θ:pres:,fly_ø:}}}}}}, 
{v_swim:θ:pres, swim_ø}}}}} 
Initial Spellout: birds that 3pl pres fly 3pl pres swim  
Spellout: birds that fly swim  
Parse found!  
SO = {C, {{birds, {C_rel_that, {birds, {INFL_v, {birds, {v_fly:θ:pres, fly_ø}}}}}}, 
{INFL_v, {{birds, {C_rel_that, {birds, {INFL_v, {birds, {v_fly:θ:pres, fly_ø}}}}}}, 
{v_swim:θ:pres, swim_ø}}}}}, 
L = [birds, that, fly, swim] ; 
 
Initial WS: swim_ø  v_swim:θ  INFL_v  fly_ø  v_fly:θ:pres  INFL_v  C_rel_that  birds   
Initial WS: swim_ø  v_swim:θ:pres  INFL_v  fly_θ  v_fly:θ  INFL_v  C_rel_that  birds   
Initial WS: swim_ø  v_swim:θ  INFL_v  fly_θ  v_fly:θ  INFL_v  C_rel_that  birds   
Initial WS: swim_ø  v_swim:θ:pres  INFL_v  fly_ø  v_fly:θ  INFL_v  C_rel_that  birds   
Initial WS: swim_ø  v_swim:θ  INFL_v  fly_ø  v_fly:θ  INFL_v  C_rel_that  birds   
false. 
 
The command report. will produce a compact and browser-friendly output, which can be 
expanded. 
 



 

Instinctively 
Finally, we need to add the adverb instinctively to LEX. Adverbs are listed by advWord/1. 
 
advWord(carefully,v+_).  % + permits unkeyed match 
advWord(furiously,v+_). 
 
We assume adverbs must seek a verb to modify, in the theory these are vP selecting adverbs. The 
second parameter is v+_, this means it selects for a phrase headed by v+_. Verbs are inserted into 
the Initial WS as a cluster of heads, usually INFL, v and the verb root. These heads are clustered 
together using the + notation. Underscore (_) here means we permit the adverb to match any vP. 
(If valued using the key to a cluster (instead of underscore), the selection will keyed too. Keying 
is clearly incorrect for adverbs.) 
 
We add: 
 
advWord(instinctively,v+_). 
 
and reload LEX, checking the entry using word2heads/2. 
 
?- [lex]. 
true. 
 
?- word2heads(instinctively,L,As). 
L = [instinctively:v+_], 
As = [] ; 
false. 
 
Then we parse the complete sentence as follows: 
 
?- parse([birds,that,fly,instinctively,swim],SO,L). 
Words: birds that fly instinctively swim  
Initial WS: swim  instinctively_v  fly  C_rel_that  birds   
Initial WS: swim_ø  v_swim:θ:pres  INFL_v  instinctively_v  fly  C_rel_that  birds   



Initial WS: swim_ø  v_swim:θ  INFL_v  instinctively_v  fly  C_rel_that  birds   
Initial WS: swim  instinctively_v  fly_θ  v_fly:θ:pres  INFL_v  C_rel_that  birds   
Initial WS: swim_ø  v_swim:θ:pres  INFL_v  instinctively_v  fly_θ  v_fly:θ:pres  
INFL_v  C_rel_that  birds 
… 
Initial Spellout: birds that 3pl pres fly instinctively 3pl pres swim  
Spellout: birds that fly instinctively swim  
Parse found!  
SO = {C, {{birds, {C_rel_that, {birds, {INFL_v, {instinctively_v, {birds, 
{v_fly:θ:pres, fly_ø}}}}}}}, {INFL_v, {{birds, {C_rel_that, {birds, {INFL_v, 
{instinctively_v, {birds, {v_fly:θ:pres, fly_ø}}}}}}}, {v_swim:θ:pres, swim_ø}}}}}, 
L = [birds, that, fly, instinctively, swim] ; 
 
INT/EXT: {C, {{birds, {C_rel_that, {birds, {INFL_v, {birds, {v_fly:θ:pres, 
fly_ø}}}}}}, {INFL_v, {instinctively_v, 
{{birds,{C_rel_that:,{birds,{INFL_v:,{birds,{v_fly:θ:pres:,fly_ø:}}}}}}, 
{v_swim:θ:pres, swim_ø}}}}}} 
Initial Spellout: birds that 3pl pres fly instinctively 3pl pres swim  
Spellout: birds that fly instinctively swim  
Parse found!  
SO = {C, {{birds, {C_rel_that, {birds, {INFL_v, {birds, {v_fly:θ:pres, fly_ø}}}}}}, 
{INFL_v, {instinctively_v, {{birds, {C_rel_that, {birds, {INFL_v, {birds, 
{v_fly:θ:pres, fly_ø}}}}}}, {v_swim:θ:pres, swim_ø}}}}}}, 
L = [birds, that, fly, instinctively, swim] ; 
 
Initial Spellout: birds that 3pl pres fly 3pl pres swim instinctively 
… 
 
We obtain the following two parses: 
 
{C, {{birds, {Crelthat, {birds, {INFLv, {instinctivelyv, {birds, {vfly:θ:pres, flyø}}}}}}}, {INFLv, 
{{birds,{C_relthat:,{birds,{INFLv:,{instinctivelyv:,{birds,{vfly:θ:pres:,flyø:}}}}}}}, {vswim:θ:pres, 
swimø}}}}} 
{C, {{birds, {Crelthat, {birds, {INFLv, {birds, {vfly:θ:pres, flyø}}}}}}, {INFLv, {instinctivelyv, 
{{birds,{C_relthat:,{birds,{INFLv:,{birds,{vfly:θ:pres:,flyø:}}}}}}, {vswim:θ:pres, swimø}}}}}} 
 

 



Reference Manual: LEX 
Basic Notation 
Generally, we write HF for head H has feature F.  
Features are separated by a colon (:), e.g. HF1:F2 means head H has features F1 and F2, and so on.  
 
In LEX, we write heads as H:F1..:Fn (plain text), portrayed as H_F1..:Fn in Terminal output 
(underscore used to separate the name of the head from its features, note: no underscore in LEX), 
and HF1..:Fn in Browser output (features are subscripts). 
 
{…} represents a set formed by Merge. Sets may be nested (hierarchical structure). 
{…} represents a set formed by FormSet. 
 
IA: internal θ-argument.  
EA: external θ-argument. 
 
For θ-Merge, the first and 2nd features are important.  
Hθ means head H takes a θ-relevant complement.  
Examples: adjectival phrase {longθ, corridor}, verb with internal argument {likeθ, seathe}. 
 
HF:θ means head H takes a θ-relevant specifier (2nd Merge).  
Example: v here selects for complement like and θ-relevant specifier {EA, {vlike:θ, {likeθ, 
seathe}}. 

Nouns 
Checklist 
For each new noun: 

1. Define θR/1. 
2. Check to see morphyStem/3 works for stemming the plural form.  

Define num/2 for plural form.  
3. Check its ϕ-features using ϕ/2.  
4. Decide whether you need to define case/2, whR/1 and animate/1. 

θ-relevant 
Nouns are θ-relevant, and selected by heads with complement or specifier (2nd Merge) feature θ. 
Define θR/1. Sample entries: 
 
θR(ball). 
θR(boat). 
θR(bombing). 
θR(car). 
θR(corridor). 
θR(city). 



NUM feature 
θ-relevant nouns are assumed to be grammatically singular unless otherwise defined. Plurals are 
defined using num/2. To determine whether a noun is plural we enlist WordNet morphy for 
stemming.  
 
morphyStem(Noun,n,Root)  
?- morphyStem(ball,n,Root).  Root = ball. 
?- morphyStem(balls,n,Root).  Root = ball. 
 
Then if ball + s = balls, we infer balls is plural.  
We also have a rule implemented that states if a noun ends in -y, plural form ends in -ies. 
 
?- morphyStem(lady,n,Root).  Root = lady. 
?- morphyStem(ladies,n,Root).  Root = lady. 
 
That is, lady - y +ies = ladies.  
 
But, morphy doesn’t always work: 
 
?- morphyStem(men,n,Root). Root = men. 
 
We cannot infer from identical form and root (reported by morphy) that men is plural. 
For these cases, we list them directly using num/2. 
 
num(men,PL) :- !, PL = pl. % red 
num(women,PL) :- !, PL = pl. % red 
 
So: 
 
?- num(men,NUM).  NUM = pl. 
?- num(men,sg).  false. 
 
Currently, we test num/2 for plurality only, i.e. we will only call num/2 with 2nd argument set to 
pl. The following queries are never made: 
 
?- num(man,NUM).  false. 
?- num(man,sg).  false. 

ϕ-features 
ϕ(N,Phi) returns ϕ-feature values Phi for a noun N. θ-relevant nouns are assumed to be 3sg 
unless otherwise defined. A noun N that satisfies num(N,pl) is 3pl. 
 
Pronouns ϕ-feature values are specified using per/2. These definitions will be accessed by ϕ/2. 
Sample entries: 
 
per('I','1sg'). 
per(we,'1pl'). 
per(us,'1pl'). 
per(ourselves,'1pl'). 



per(you,'2pl'). 
per(yourselves,'2pl'). 
per(they,'3pl'). 
per(them,'3pl'). 
per(themselves,'3pl'). 

Case 
Case is only checked at EXT, not part of Merge syntax. Define restrictions on Case using 
caseR/2. If not defined here, assume unrestricted. Sample entries. 
 
caseR('I',nom). 
caseR(me,acc). 
caseR(we,nom). 
caseR(us,acc). 
caseR(they,nom). 
caseR(them,acc). 
caseR(whom,acc).  % tricky: whom did John see? 

wh-feature 
wh-relevant nouns are defined using whR/1. Sample entries: 
 
whR(what). 
whR(who). 
whR(whom). 
 

Other features on nouns 
For relative clause formation, the animacy property seems to select between relative pronouns 
who and that.  
 
The man/mechanic who I saw 
*The man/mechanic that I saw 
The shop that I saw 
*The shop who I saw 
 
Define animate/1. Sample entries: 
 
animate(old). 
animate(man). 
animate(mechanic). 
animate(men). 
animate(woman). 
animate(women). 

Determiners 
Do not project in this theory, i.e. no DPs. Therefore nothing selects for a determiner. 
 
Determiners are essentially a bundle of semantic features associated with a head noun, e.g. the is 
definite, a indefinite. In this implementation, we simply say the (and a) are a feature on a noun. 
 



Define det/1. Sample entries: 
 
det(a). 
det(every). 
det(one). 
det(some). 
det(the). 
 
TODO: some theory for possessive pronouns. 
 
%% temporary, fix these later with some structure 
det(my). 
det(your). 
det(his). 
det(her). 
det(its). 
det(our). 
det(their). 
 

Adjectives 
Triggers θ-Merge. Optionally, nominalization can be triggered after θ-Merge. 
 
Example: narrowθ selects for an object as in narrow corridor. 
Nominalization is optional as the follow examples demonstrate: 
 
The corridor is narrow 
I liked the narrow corridor 
 
Defined in aR/2. Sample entries: 
 
aR(colorless, θ). 
aR(criminal, θ). 
aR(dark, θ). 
aR(green, θ).   % all color names can be adjectives or nouns, right? 
aR(happy, θ). 
aR(long, θ). 
aR(narrow, θ). 
aR(old, θ). 
aR(sad, θ). 
aR(flying, θ).   % gerunds are adjectival 

Adverbs 
Triggers selection (sMerge). 
 
Example: carefullyv seeks a vP to modify in the mechanic carefully fixed the car. 
 
Define advWord/2. Sample entries: 
 
advWord(carefully,v+_).  % + permits keyed match 



advWord(furiously,v+_). 
 
(+) keying of selected v is necessary as adverbs are part of the extended verbal projection. 

Prepositions 
Triggers θ-Merge and secondary selection (s2Merge). 
 
Example: byθ:v in the food was eaten by the man. 
 
byθ:v selects for a θ-relevant object, the man, and θ-Merge constructs {byθ:v, manthe}. 
Preposition byθ:v selects also for a phrase headed by v.  
This is secondary selection, applied after θ-Merge above. 
The phrase is {vv:pass:pres, {veat, {eatθ:pastp, foodthe}}}, headed by vv:pass:pres. 
Head vv:pass:pres suppresses θ-selection (a requirement peculiar to byθ:v).  
This is so we can identify the θ-role suppressed by vv:pass:pres with the one selected by byθ:v. 
Other prepositions, e.g. with or on as in with a telescope or on the boat, do not have this 
secondary selection requirement on vP. In other words, θ-selection by other prepositions will not 
identified with the main arguments of the vP.  
 
Example derivation with byθ:v. 
 
Initial WS 3: manthe byθ:v eatθ:pastp veat INFLv vv:pass:pres foodthe  
WS 1: {eatθ:pastp, foodthe} manthe byθ:v veat INFLv vv:pass:pres  
WS 2: {veat, {eatθ:pastp, foodthe}} manthe byθ:v INFLv vv:pass:pres  
WS 3: {vv:pass:pres, {veat, {eatθ:pastp, foodthe}}} manthe byθ:v INFLv  
WS 4: {byθ:v, manthe} {vv:pass:pres, {veat, {eatθ:pastp, foodthe}}} INFLv  
WS 5: {{vv:pass:pres, {veat, {eatθ:pastp, foodthe}}}, {byθ:v, manthe}} INFLv  
WS 6: {foodthe, {INFLv, {{vv:pass:pres, {veat, {eatθ:pastp, foodthe}}}, {byθ:v, manthe}}}}  
{C, {foodthe, {INFLv, {{vv:pass:pres, {veat, {eatθ:pastp, foodthe}}}, {byθ:v, manthe}}}}} 
the food 3sg pres be en eat by the man  
Spellout: the food is eaten by the man 

Passivization as main verb θ-role suppression 
In the example above, passive vv:pass:pres selects for veat:θ, which selects for an external argument 
(θ). Passive vv:pass:pres transforms veat:θ into veat, which then does not project an external argument 
(θ-role suppression). 

Verbs: introducing the verbal cluster 
A cluster of heads is inserted into the Initial Workspace (WS) when the parser recognizes a verb. 
 
For example, the copula verb form is analyzed as the pair INFLv:3sg-vpred:pres.  The head INFL 
here has ϕ-features 3sg and selects for a phrase headed by the categorizer v, which, in turn, 
selects for a phrase headed by a predicate (pred), e.g. criminal, as in Chomsky’s example the 
bombing of the cities is criminal.  v also has TNS feature pres (present).  Note the copula has no 
θ-selection properties. Compare this with a regular verb such as liked, which is associated with 



the cluster INFLv-vlike:θ:pst-likeθ. The categorizer v, here with past TNS (pst) and selecting for root 
like, and like take a θ-relevant WS item at 2nd and 1st Merge, respectively. 
 
The first step the parser takes is to stem the inflected verb form (using morphy), as in (a-i) and 
(b-i) below. For is and liked, the suffix is -s and -d, which are associated with TNS feature pres 
and pst (to be attached to v), respectively. In (a-iii) and (b-iii), L is the list of heads that enter the 
Initial WS on behalf of is and liked. 
 
a.      b. 
i. ?- vStem(is,V,S). V=be, S=s  ?- vStem(liked,V,S). V=like, S=d 
ii. ?- vEnding(s,TNS). TNS=pres  ?- vEnding(d,TNS). TNS=pst 
iii. ?- θ(is,L). L=[vpred:pres, INFLv:3sg] ?- θ(liked,L). L=[likeθ, vlike:θ:pst, INFLv] 
 
Generally, there may be multiple cluster possibilities for a verb, leading to multiple (distinct) 
initial WS’s. For example, be is not only the copula in English, but also a main verb, e.g. they 
are aeroplanes, and the progressive auxiliary be, as in they are eating lunch. Similary, a verb 
like melt may participate in various alternations, the ice melted / the sun melted the ice. We 
assume LEX lookup will return the appropriate cluster possibilities, e.g. as in (a) and (b).  
 
a.      b. 
?- θ(is,L).     ?- θ(melted,L). 
L = [vpred:pres, INFLv:3sg] ;  L = [meltø, vmelt:θ:pst, INFLv] 
L = [beθ, vbe:θ:pres, INFLv:3sg]  L = [meltθ, vmelt:θ:pst, INFLv] 
L = [vv:prog:pres, INFLv:3sg] 
 
(Note: meltø and meltθ signals that melt takes no complement (∅ = empty set) and a θ-relevant 
WS item as complement, respectively.) 

Verbs and LEX 
Two distinct systems, EXT and Merge, are involved when adding a new verb. 
 

• EXT: requires stemming  (parsing) and inflection (for spellout). 
• Merge: requires verbal cluster INFL-v-Root and selectional properties to be defined. 

 

EXT: Stemming 
Morphy does general verb stemming duties when parsing, morphyStem(Word,C,Root), with C = 
v (for verbs). Examples below: 
 
?- morphyStem(likes,v,Root). Root = like. 
?- morphyStem(seen,v,Root). Root = see. 
?- morphyStem(sold,v,Root). Root = sell. 
?- morphyStem(saw,v,Root). Root = saw. 
 
The general interface for all input verb forms is via vStem(Word,Root,Suffix).  Examples 
below: 
 
?- vStem(eat,Root,Suffix). Root = eat, Suffix = . 



?- vStem(eats,Root,Suffix). Root = eat, Suffix = s. 
?- vStem(ate,Root,Suffix). Root = eat, Suffix = d. 
?- vStem(eaten,Root,Suffix). Root = eat, Suffix = en. 
?- vStem(eating,Root,Suffix). Root = eat, Suffix = ing. 
 
Suffixes generally recognized are defined in vEnding(Suffix,TNS), summarized below: 
 

1. ‘’ (empty) (untensed or present tense),  
2. d/ed (past tense),  
3. s (3sg present tense),  
4. en (past participle), and  
5. ing (present participle).  

 
Endings d/ed and ‘’/s are recognized and map to TNS features pst (past) and pres (present), 
respectively. ‘’ alone has the option of no TNS mapping for untensed, e.g. win in to win. (s will 
separately map to ΙΝFL φ-features 3sg for Agree at EXT.)  
 
Suffixes  are computed automatically from sub-string differences between the Word and Root, 
not possible in the case of sold = sell + d, but done automatically for sees = see + s, liked = like + 
d and kicked = kick + ed.  At present, a rule is also provided for Root ending in -y to Word 
ending in -ies and suffix s, e.g. as with Word flies and verb root fly. 
 
Irregular suffixation cases must be explicitly listed as irregularV(Word,Root,Suffix) entries, 
defined in LEX.  Sample entries: 
 
irregularV(broken,break,en). 
irregularV(broke,break,d). 
irregularV(saw,see,d). 
irregularV(seen,see,en). 
 
Note: a default rule is run as a last resort. When no irregular entry exists and it cannot detect the 
suffix by sub-string, but Morphy says it is a valid verb form, it guesses the suffix is d (past tense) 
or en (past participle). For example, Morphy says ate comes from verb root eat, but does not 
supply a suffix. Next, suppose ate is not listed in irregularV/3, then vStem/3 will return both 
choices: 
 
?- vStem(ate,Root,Suffix). 
Root = eat, Suffix = d ; 
Root = eat, Suffix = en. 
 
Once we add the following entry, the incorrect guess is eliminated. 
 
irregularV(ate,eat,d). 
 
?- vStem(ate,Root,Suffix). 
Root = eat, Suffix = d 

EXT: Inflection 
 



For spellout after Merge has converged, each head H and its features are externalized via 
ext(H,N,Copies,List,OutputFlag), where List is a sequence of words and bound 
morphemes.1 Content heads such as nouns, adjectives, adverbs and verbs spell out as named 
heads. Functional heads, e.g. C, v and INFL usually will not spell out as words. Instead, they 
may have features that may spell out as individual words or (bound) morphemes that must be 
attached to words. For verbs, generally there will be a root head immediately preceded by φ and 
TNS from functional heads INFL and v, respectively. (φ on INFL comes from Agree with the 
surface subject.) The mapping φ+TNS+Root to inflected form is defined via 
inflectedV(Phi,TNS,Root,Word).  
 
Similarly, inflectedV(Suffix,Root,Word) defines rules for regular (concatenative) cases such 
as en+eat = eaten and ing + eat = eating, as well as ing + like = liking. 
 
?- inflectedV(ing,like,Word). Word = liking. 
 
Irregular spellout must be listed explicitly in irregularVspell(Suffix,Root,Word) as shown 
below: 
 
irregularVspell(en,break,broken). 
irregularVspell(ing,see,seeing). 
 
irregularVspell(en,be,been). 
irregularVspell(ing,be,being). 
irregularVspell(ing,have,having). 
irregularVspell(en,have,had). 

Merge 
θ-configurations are built by θ-aware Merge, which relies on selectional properties of roots and 
other heads in the extended verbal projection. These are listed for individual verbs in 
vR(Root,LittleV,R_selects). Examples below: 
 
vR(arrive, v:arrive, θ).  % a train arrives 
vR(be, v:pred, none).   % copula, just a v 
vR(be, v:v+_:prog, zero).  % PROG -> be ing (keyed) 
vR(dance, v:dance:θ, ø).  % Mary dances  
vR(eat, v:eat:θ, θ).   % John ate a sandwich  
vR(melt, v:melt:θ, ø).   % ice melted 
vR(melt, v:melt:θ, θ).   % sun melted the ice  
vR(must, v:v+_:modal:word(must), zero). % must have (no TNS)  
vR(saw,  v:saw:θ, θ).   % John sawed the rope 
vR(see,  v:see:θ, θ).   % Mary saw John  
vR(want, v:want:θ, 'INFL').  % Mary wants to ... 
vR(will, v:v+_:modal:word(will), zero). % will/would have (no TNS) 

 
1 Inputs N and Copies, not described here track FormCopy heads that will not be pronounced. N gives the local 
position of the head in the structure and Copies contains a list of unpronounced positions. Together, they control 
whether the head generates output or not. If a copy is recognized, i.e. when N is listed in Copies, EXT is instructed to 
not generate anything for the head except with respect to Agree, e.g. in the case of Subject-Verb agreement, even if 
the argument is not spelled out at the edge of INFL, it can output φ-features used for verbal inflection. (Finally, 
OutputFlag controls EXT error signaling and debugging, and can be ignored.)   



vR(win, v:win:θ, ø).   % Mary won 
 
For example, the entry for unaccusative root arrive indicates that it is keyed with the head 
v:arrive. This means the categorizer v selects for a phrase headed by root arrive. The root 
arrive itself selects θ (denoting a θ-relevant WS item). An INFL head keyed to the catgorized 
v by selection is also generated. θ-aware Merge can then construct the θ-configuration in (c) 
below, beginning with heads (a) inserted after stemming the input arrived. IA represents a θ-
relevant item selected from the rest of the WS. In (d), INFLv selects for the v phrase built in 
(c). INFLv triggers Search for a θ-relevant item inside the θ-configuration. There is only one 
possiblity, IA. Internal Merge produces (e). (After the INFLv phrase has been built, a further 
addition of declarative complementizer C completes the clause and Merge’s task is complete. 
 

a. INFLv   varrive:pst   arriveθ    IAφ   C 
b. INFLv   varrive:pst   {arriveθ:pst, IAφ}   C 
c. INFLv  {varrive:pst, {arriveθ, IAφ}}   C 
d. {INFLv, {varrive:pst, {arriveθ, IAφ}}}   C 
e. {IAφ, {INFLv, {varrive:pst, {arriveθ, IAφ}}}}   C 
f. {C, {IAφ, {INFLv, {varrive:pst, {arriveθ, IAφ}}}} 
g. {C, {IAφ, {INFLv, {varrive:pst, {arriveθ, IAφ}}}} (IAφ,IAφ) 
h. C IAφ INFLv:Φ  varrive:pst arriveθ 
i. IA φ pst arrive  
j. IA arrived 

 
In (g), FormCopy applies, constructing the c-command relation (IAφ,IAφ), the 2nd of which will 
not be externalized. (h) shows the sequence of heads (in English-particular order) 
transmitted to Spellout at EXT. The declarative head C does not spell out. Agree applies 
between surface subject IA and INFLv, valuing φ on INFLv, spelling out as morpheme φ at (i). 
At step (j), the mapping from the linear sequence φ+pst+arrive to arrived happens.  
 
In the case of unergative verb dance, the root selects ø (the empty set), i.e. it does not take a 
complement. The categorizer is listed as v:dance:θ, this means v selects the root dance first, 
and a second Merge selects θ (denoting a θ-relevant WS item). In the case of verbal form 
dances, θ-aware Merge builds the θ-configuration in (c). The rest of the derivation  steps follow 
those above, except for the φ+pres+dance mapping. If EA is a plural noun, e.g they, 
3pl+pres+dance = dance, and 3sg+pres+dance = dances in the case of a singular noun such as 
Mary. 
 

a. INFLv   vdance:pres   danceø     EAφ  C 
b. INFLv   {vdance:pres, danceø}  EAφ  C 
c. INFLv   {EAφ, {vdance:pres, danceø}}   C 
d. {INFLv, {EAφ, {vdance:pres, danceø}}}  C 
e. {EAφ, {INFLv, {EAφ, {vdance:pres, danceø}}}}  C 
f. {C, {EAφ, {INFLv, {EAφ, {vdance:pres, danceø}}}}} 
g. {C, {EAφ, {INFLv, {EAφ, {vdance:pres, danceø}}}}}  (EAφ, EAφ) 
h. C EAφ INFLv:φ vdance:pres  danceø 



i. EAφ φ pres dance 
j. They dance / Mary dances 

 
 
 
 


